Skip to content
  • Политика конфиденциальности
  • Обратная связь

likeauto.ru

Автомобильный портал

  • Безопасность
  • Двигатель
    • Бензиновый двигатель
    • Дизельный двигатель
    • Клапана
    • Масло в двигатель
  • Законодательство
  • Кузов авто
  • Новости
  • Обзоры авто
  • Ремонт авто
  • Страхование
  • Топливная система
    • Гбо
  • Тормозная система
  • Трансмиссия
    • Акпп
    • Вариатор
    • Мкпп
    • Сцепление
  • Ходовая часть
    • Подвеска авто
    • Шины и диски
  • Электрика
    • Электроника
  • Toggle search form
Что такое кпд трансмиссии автомобиля
Posted on 14 января 2024 By likeauto_admin Комментариев к записи Что такое кпд трансмиссии автомобиля нет

Содержание

Toggle
  • Что такое кпд трансмиссии автомобиля
  • Что такое трансмиссия и как она работает — фото видео.
  • Определение понятия «трансмиссия»
  • Назначение и схемы трансмиссий
  • Классификация трансмиссий
    • Механическая трансмиссия
    • Гидромеханическая трансмиссия
    • Гидравлическая трансмиссия
    • Гидростатическая трансмиссия
    • Электромеханическая трансмиссия

Что такое кпд трансмиссии автомобиля

Все про машины

Мощность от двигателя к колесам передается агрегатами трансмиссии, при этом часть мощности затрачивается на преодоление сил трения в зацепления зубчатых колес КПП и главной передачи, в карданных шарнирах, подшипниках и сальниковых уплотнениях. Часть мощности затрачивается на преодоление гидравлических потерь, связанных с разбрызгиванием и преодолением сопротивления смазочных материалов. Следовательно, тяговая мощность NT, подводимая к ведущим колесам при равномерном движении автомобиля, меньше эффективной мощности двигателя Ne на значение мощности NTP, теряемой в трансмиссии.

(22)

Потери энергии в трансмиссии часто определяют по моменту MTP, приведенному к ведущим колесам.

(23)

где: wК – угловая скорость ведущих колес, рад/сек.

Как было сказано выше, величины NTP и MTP учитывают гидравлические потери и потери, вызванные трением.

Гидравлические потери можно определить по эмпирической формуле:

(24)

где: V– скорость автомобиля, м/с;

Ga– вес автомобиля, выраженный в Ньютонах;

r– динамический радиус колеса, м.

Проводим аналогичные расчеты для других значений и полученные данные сводим в таблицу 7.

Таблица 7 – Значение момента на преодоление гидравлических потерь в

n,об/мин UI UII UIII UIV UV Uз.х.
0,919269 0,919188 0,91911 0,919016 0,918939 0,919269
0,919174 0,919011 0,918856 0,918667 0,918514 0,919174
0,919078 0,918834 0,918601 0,918319 0,918089 0,919079
0,918983 0,918657 0,918347 0,91797 0,917664 0,918984
0,918887 0,91848 0,918092 0,917621 0,917239 0,918888
0,918791 0,918303 0,917838 0,917273 0,916814 0,918793
0,918696 0,918126 0,917583 0,916924 0,916389 0,918698
0,9186 0,917949 0,917329 0,916576 0,915963 0,918603
0,918505 0,917772 0,917074 0,916227 0,915538 0,918507
0,918409 0,917595 0,91682 0,915878 0,915113 0,918412
0,918314 0,917418 0,916565 0,91553 0,914688 0,918317
0,918218 0,917241 0,916311 0,915181 0,914263 0,918222
0,918123 0,917064 0,916056 0,914832 0,913838 0,918126

Потери энергии на трение в зубчатых зацеплениях и карданных шарнирах пропорциональны моменту, передаваемому трансмиссией. Эти потери не зависят от частоты вращения деталей.

Момент, затраченный на преодоление сил трения, определяем по формуле:

(25)

где: UTP– передаточное число трансмиссии на выбранной передаче.

(26)

где: k, l– число соответственно цилиндрических и конических зубчатых колес, участвующих в передаче крутящего момента на выбранной передаче;

m– число карданных шарниров, передающих нагрузку.

Поскольку, число цилиндрических и конических зубчатых колес, участвующих в передаче крутящего момента одинаково, соответственно:

Таким образом, момент сопротивления трансмиссии, приведенный к ведущим колесам:

(27)

Для определения максимальной скорости на различных передачах необходимо определить число цилиндрических (k), конических или червячных (l) зубчатых пар, через которые на данной передаче последовательно передается крутящий момент, а также число карданных шарниров (m).

Проводим аналогичные расчеты для других значений и полученные данные сводим в таблицу 8.

Таблица 8 – Значение момента на преодоление общих потерь в трансмиссии

n,об/мин UI UII UIII UIV UV Uз.х.
8,953366 9,166556 9,369409 9,615841 9,816138 8,952683
9,203357 9,629736 10,03544 10,5283 10,9289 9,201991
9,453347 10,09292 10,70147 11,44077 12,04166 9,451298
9,703337 10,5561 11,36751 12,35323 13,15442 9,700605
n,об/мин UI UII UIII UIV UV Uз.х.
9,953327 11,01928 12,03354 13,2657 14,26718 9,949912
10,20332 11,48246 12,69957 14,17816 15,37994 10,19922
10,45331 11,94564 13,3656 15,09063 16,49271 10,44853
10,7033 12,40882 14,03164 16,00309 17,60547 10,69783
10,95329 12,87199 14,69767 16,91556 18,71823 10,94714
11,20328 13,33517 15,3637 17,82802 19,83099 11,19645
11,45327 13,79835 16,02973 18,74048 20,94375 11,44576
11,70326 14,26153 16,69576 19,65295 22,05651 11,69506
11,95325 14,72471 17,3618 20,56541 23,16927 11,94437

В зависимости от режима движения автомобиля используют различные способы оценки потерь. Так, если трансмиссия передает энергию от двигателя к ведущим колесам (активный режим), то потерю мощности в трансмиссии оценивают по прямому КПД, представляющему собой отношение тяговой мощности к эффективной, или отношение соответствующих значений моментов.

(28)

Если в полученную формулу подставить значение момента сопротивления трансмиссии MTP получаем:

(29)

При торможении автомобиля двигателем трансмиссия передает энергию от ведущих колес к двигателю, то потери энергии оценивают по мощности NTP и MTP трения в двигателе, на основании которых рассчитывают обратный КПД трансмиссии:

(30)

где: NТ.Д. и MТ.Д. – мощность и момент, развиваемые при торможении двигателем.

Приблизительные значения прямого (при работе двигателя с полной нагрузкой) и обратного (при принудительном холостом ходе) КПД трансмиссии приведены в таблице 9.

Таблица 9 – Приблизительные значения КПД трансмиссии

Автомобили hТР hОБР
Спортивный 0,9…0,95 0,8…0,85
Легковой 0,9…0,92 0,8…0,82
Грузовой и автобус 0,82…0,85 0,75…0,78
Повышенной проходимости 0,8…0,85 0,73…0,76

Таблица 10 – Значение КПД трансмиссии на каждой передаче

Не нашли, что искали? Воспользуйтесь поиском:

Источник статьи: http://vikidalka.ru/2-61735.html

Что такое трансмиссия и как она работает — фото видео.

Когда каждый человек еще в детстве начинает интересоваться автомобилями, он изучает не только марки и моделей машин, но и устройство автомобиля. Одним из главных агрегатов автомобиля является трансмиссия, которая состоит из множества более мелких узлов и агрегатов. В данной статье мы расскажем всем интересующимся молодым автомобилистам, что такое трансмиссия в автомобиле.

Определение понятия «трансмиссия»

Согласно научным изданиям машиностроения, трансмиссия – это совокупность механизмов и сборочных единиц, которые соединяют двигатель с ведущими колесами, в данном случае, автомобильного транспорта, а также совокупность системы, которая обеспечивает работу трансмиссии.

Трансмиссия является совокупностью агрегатов и узлов, которые передают крутящий момент от мотора к ведущим колесам, при этом могут изменяться тяговые усилия, скорость и направление движения. Автомобильная трансмиссия включает в себя механизмы, которые в науке относят к составу силового агрегата – это коробка передач и сцепление.

Назначение и схемы трансмиссий

Назначение. Трансмиссия автомобиля служит для передачи крутящего момента от двигателя к ведущим колесам. При этом передаваемый крутящий момент изменяется по величине и распределяется в определенном соотношении между ведущими колесами.

Крутящий момент на ведущих колесах автомобиля зависит от передаточного числа трансмиссии, которое равно отношению угловой скорости коленчатого вала двигателя к угловой скорости ведущих колес. Передаточное число трансмиссии выбирается в зависимости от назначения автомобиля, параметров его двигателя и требуемых динамических качеств.

В транс­миссию входят:

  • сцепление,
  • коробка передач,
  • карданная передача,
  • главная передача, устанавливаямая в картере ведущего моста,
  • дифференциал
  • полуоси.

Сцепление позволяет на непродолжительное время отсоединить трансмиссию от двигателя и обеспечивает плавное включение трансмиссии при трогании автомобиля с места или при переключении передач.

Коробка передач служит для получения различных тяговых усилий на ведущих колесах путем изменения крутящего момента, передаваемого от двигателя к карданному валу, а также для изменения направления вращения ведущих колес при движении задним ходом и для отключения трансмиссии от двигателя на длительное время.

Карданная передача позволяет передавать крутящий момент от выходного вала коробки передач к заднему мосту при изменяющемся (при движении автомобиля) угле между осями вала коробки передач и ведущего вала главной передачи.

Главная передача служит для того, чтобы передать крутящий момент под углом 90 градусов от карданного вала к полуосям, а также для уменьшения числа оборотов ведущих колес по отношению к числу оборотов карданного вала. Уменьшение частоты вращения механизмов трансмиссии после главной передачи приводит к увеличению крутящего момента и, соответственно, увеличивает силу тяги на колесах.

Дифференциал обеспечивает возможность вращения правого и левого ведущих колес с разными скоростями на поворотах и неровной дороге. Две полуоси, связанные с дифференциалом через полуосевые шестерни, передают крутящий момент от дифференциала к правому и левому ведущим колесам. Дифференциалы, устанавливаемые между приводами колес ведущей оси, называют межколесными, между разными осями — межосевыми (в полноприводных трансмиссиях).

Трансмиссии по способу передачи крутящего момента разделяют на механические, гидравлические, электрические и комбинированные (гидромеханические, электромеханические). На отечественных автомобилях наиболее распространены механические трансмиссии, в которых передаточные механизмы состоят из жестких недеформируемых элементов (металлических валов и шестерен). На автобусах Ликинского и Львовского заводов, а также на большегрузных автомобилях БелАЗ применяют гидромеханические трансмиссии с автоматизированным переключением передач. Часть большегрузных автомобилей БелАЗ имеют электромеханическую трансмиссию с моторколесами.

Схема трансмиссии автомобиля. Она определяется его общей компоновкой: размещением двигателя, числом и расположением ведущих мостов, видом трансмиссии.

Схемы трансмиссий:
а — автомобиля 4X2, б — переднеприводного автомобиля 4X2, в — автомобиля 4X4, г — автомобиля 6X4

Автомобили с механической трансмиссией и колесной формулой 4X2 имеют чаще всего переднее расположение двигателя, задние ведущие колеса и центральное размещение агрегатов трансмиссии (автомобили ЗИЛ-130, МАЗ-5335, ГАЗ-24 и др.). Здесь двигатель 1, сцепление 2 и коробка передач 3 (рис. а) объединены в один блок и образуют силовой агрегат. Крутящий момент от коробки передач 3 передается карданной передачей 4 на ведущий задний мост 5.

Существенные отличия имеет трансмиссия переднеприводного автомобиля ВАЗ-2108 с колесной формулой 4X2 (рис. 6). Особенностью этой схемы является выполнение ведущим переднего моста с управляемыми колесами. Это потребовало объединения в единый силовой агрегат двигателя 1, сцепления 2, коробки передач 3, механизмов ведущего моста 5 (главную передачу и дифференциал), карданных шарниров 6 равных угловых скоростей, соединенных с передними управляемыми колесами.

На (рис. в) представлена схема трансмиссии автомобиля с передним и задним ведущими мостами (автомобиль УАЗ-469). Отличительной особенностью этой схемы является применение в трансмиссии раздаточной коробки 7, которая через промежуточные 9 карданные валы передает крутящий момент переднему 8 и заднему 5 ведущим мостам. В раздаточной коробке имеется устройство для включения и выключения переднего моста и дополнительная понижающая передача, позволяющая значительно увеличить крутящий момент на колесах автомобиля в необходимых случаях.

Схема механической трансмиссии трехосных грузовых автомобилей КамАЗ представлена на (рис. г). На этих автомобилях средний 10 и задний 5 мосты являются ведущими. Крутящий момент к ним передается одним карданным валом 4, а в главной передаче среднего моста предусмотрен межосевой дифференциал и проходной вал, передающий крутящий момент на карданный вал 11 привода заднего моста. В других схемах трансмиссий трехосных автомобилей передача крутящего момента к ведущим мостам может производиться раздельно карданными валами от раздаточной коробки (автомобиль Урал-375).

Схемы гидромеханических трансмиссий предусматривают объединение в едином блоке двигателя и гидромеханической коробки передач, крутящий момент от которой передается ведущим колесам через карданный вал и механизмы заднего моста как в обычной механической трансмиссии.

На автомобилях (БелАЗ) с электромеханической трансмиссией дизельный двигатель приводит во вращение генератор постоянного тока, энергия от которого передается по проводам в электродвигатели колес. Колесный электродвигатель монтируют в ободе колеса совместно с понижающим механическим редуктором. Такая конструкция называется электромотор-колесом.

Классификация трансмиссий

Рассмотрим классификацию трансмиссий.

По методам передачи и преобразованию момента трансмиссии подразделяются на электромеханические, механические и гидромеханические.

Механическая трансмиссия

Трансмиссии механического типа (обычные и планетарные) в КПП содержат только фрикционные и шестеренчатые устройства. Преимущества их заключаются в коэффициенте полезного действия, небольшой массе и компактности, простоте в эксплуатации и на­деж­нос­ти в работе. Недостаток трансмиссии такого типа – ступенчатость изменения передаточных чисел, понижающая использование мощности силового агрегата. Длительное время на пе­рек­лю­че­ние рычагом передач усложняет управление автомобилем. Именно поэтому спор­тив­ные автомобили, оснащенные механической трансмиссией, снабжают электронными переключателями передач (кнопками на рулевом колесе, подрулевыми лепестками) и КПП со сверхбыстрыми синхронизирующими сервомеханизмами.

Использование трансмиссий механического типа свойственно советскому трак­то­ро­стро­е­нию.

Гидромеханическая трансмиссия

Трансмиссии гидромеханического типа оснащены гидромеханической КПП, которая состоит из механического редуктора и гидродинамического преобразователя момента. Преимущества таких трансмиссий заключаются в возможности автоматизации смены пе­ре­да­чи и облегчении управления, автоматическом изменении крутящего момента на основе внешних сопротивлений, фильтрации крутильных колебаний и уменьшении пиковых наг­ру­зок, действующих на агрегаты трансмиссии, и увеличении за счет этого долговечности и надежности трансмиссии поршневого мотора.

Главный недостаток таких трансмиссий – достаточно низкий коэффициент полезного действия из-за недостаточно большого КПД гидротрансформатора. Если КПД гид­ро­пе­ре­да­чи не меньше 0.8, диапазон изменения крутящего момента не выше трех, что заставляет иметь механический редуктор на 3-5 передач, включая передачу заднего хода. Необходимо располагать специальной системой охлаждения, а также подпитки гидроагрегата, что увеличивает габаритные размеры моторно-трансмиссионного отдела. Без фрикционов или специальных автологов пуск двигателя с буксира и торможением двигателем не обес­пе­чи­ва­ет­ся.

Трансмиссии гидромеханического типа активно применяются в западном трак­то­ро­стро­е­нии – «Леопард-2» (ФРГ), М1 «Абрамс» (США). В трансмиссиях перечисленных танков в основном приводе, кроме гидромеханических передач, также применяются в до­пол­ни­тель­ном приводе гидростатические передачи для выполнения поворота. Гид­ро­ме­ха­ни­чес­кой передачей оснащен дизель-поезд под названием Д1 венгерского производства, ра­бо­та­ю­щий на постсоветском пространстве ЖД-техники.

Гидравлическая трансмиссия

Трансмиссией гидравлического типа в транспортной технике является такая транс­мис­сия, в которой переключения осуществляются не механическим методом, а гид­рав­ли­чес­ки­ми аппаратами, т.к. чисто гидравлические трансмиссии встречаются довольно редко. Трансмиссия такого типа оборудована КПП с вторичным и первичным валами, а также, как и в обычной КПП, несколькими парами зубчатых колес, но включение необходимой пары в рабочий процесс выполняет не фрикционная или кулачковая муфта, а гидромуфта или же гидротрансформатор, который заполняется для включения передачи.

Главное достоинство трансмиссии такого типа – включение передач совершенно безударное и полное отсутствие механических муфт, стабильно работающих в процессе передачи больших крутящих мо­мен­тов (к примеру, на тепловозах), главный минус – необходимость монтажа отдельной гидромуфты для каждой передачи. Из-за своих особенностей гидропередача применяется в основном на железнодорожной технике. Из отечественных разновидностей техники гид­ро­пе­ре­да­чей оснащены, к примеру, дизель-поезд ДР1, маневровые тепловозы ТГМ6 и ТГМ4.

Гидростатическая трансмиссия

В трансмиссии гидростатического типа для передачи мощности применяется ак­си­аль­но-плунжерные гидромашины. Преимущества данной трансмиссии – небольшая масса и габариты машин, отсутствие механической связи между ведущим и ведомым звеньями трансмиссии, благодаря чему удается разносить их на достаточно значительные расстояния и придавать гораздо большее число степеней свободы. Главный минус гидрообъемной передачи – высокие требования к чистоте жидкости, участвующей в рабочем процессе, а также повышенное давление в гидролинии.

Гидростатическая передача применяется на дорожно-строительных машинах (в основном в катках, так как там необходимо обеспечивать достаточно большое передаточное число, а также очень часто приводить вальцы с торца, затруднено построение механической передачи), как вспомогательная – в авиационной технике, металлорежущих станках, теп­ло­во­зах.

Электромеханическая трансмиссия

Трансмиссии электромеханического типа состоят из тягового электромотора (или нескольких), электрического генератора, электрической системы контроля, а также со­е­ди­ни­тель­ных кабелей. Главным достоинством трансмиссий электромеханического типа яв­ля­ет­ся обеспечение более широкого диапазона автоматического изменения силы тяги и крутящего момента, а также отсутствие кинематической жесткой связи между механизмами электротрансмиссии, что дает возможность создать разные компоновочные схемы.

Главными минусами, которые препятствуют распространению трансмиссий элект­ри­чес­ко­го типа, являются большая масса, габариты и цена (особенно если применяются электромашины постоянного тока), меньший КПД (по сравнению с механической). Но с развитием электротехнической промышленности, широким распространением ин­дук­тор­но­го, вентильного, синхронного, асинхронного и других разновидностей электропривода открывается все больше новых возможностей для электромеханических трансмиссий.

Данные трансмиссии широко используются в тепловозах, тракторах, карьерных самосвалах, морских судах, военной технике, самоходных механизмах, немецких военных машинах «Мышонок» и «Фердинанд», а также автобусах, которые с трансмиссией этой разновидности более правильно называются теплоэлектробусы, к примеру, ЗИС-154.

На современных автомобилях, по большей части, используется трансмиссия ме­ха­ни­чес­ко­го типа. Трансмиссия механического типа, в которой изменение крутящего момента происходит в автоматическом режиме, называется автоматической трансмиссией.

На этом классификацию трансмиссий можно считать рассмотренной.

https://overs-energy.ru/chto-takoe-kpd-transmissii-avtomobilya/

Трансмиссия

Навигация по записям

Previous Post: Как заменить и обслуживать тормозную жидкость Киа Рио: основные факты
Next Post: Значок скользкая дорога — Диагностика, Ремонт и Удаление с приборной панели

Related Posts

Шасси автомобиля — что это, устройство и классификация Трансмиссия
Виды трансмиссий: преимущества и недостатки Трансмиссия
Трансмиссия машины, конструктивные особенности Трансмиссия
5 отличий между коробкой автомат и робот: преимущества и недостатки трансмиссий Трансмиссия
Для чего предназначена трансмиссия автомобиля: Общее устройство трансмиссии – Трансмиссия автомобиля: устройство, принцип работы, классификация Трансмиссия
Основные элементы автомобиля — кузов, ходовая, двигатель Трансмиссия

Добавить комментарий Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Свежие записи

  • Строительство дорог в России стало дороже
  • “Серые” автомобили Li Auto в России будут легализованы
  • Прорыв в технологиях: как 3D печать больших размеров меняет промышленность
  • Помощь в оформлении пропусков для грузовых автомобилей: виды, сроки, документы
  • Как снять краску с пластика салона автомобиля

Информация для правообладателей

Все материалы на данном сайте взяты из открытых источников — имеют обратную ссылку на материал в интернете или присланы посетителями сайта и предоставляются исключительно в ознакомительных целях. Права на материалы принадлежат их владельцам. Администрация сайта ответственности за содержание материала не несет. Если Вы обнаружили на нашем сайте материалы, которые нарушают авторские права, принадлежащие Вам, Вашей компании или организации, пожалуйста, сообщите нам через форму обратной связи.

Облако тегов

Ваш браузер не поддерживает тег HTML5 CANVAS.

  • Подвеска авто
  • Акпп
  • Новости
  • Клапана
  • Дизельный двигатель
  • Электроника
  • Масло в двигатель
  • Топливная система
  • Бензиновый двигатель
  • Шины и диски
  • Кузов авто
  • Электрика
  • Гбо
  • Ходовая часть
  • Трансмиссия
  • Страхование
  • Вариатор
  • Ремонт авто
  • Законодательство
  • Тормозная система
Июль 2025
Пн Вт Ср Чт Пт Сб Вс
 123456
78910111213
14151617181920
21222324252627
28293031  
« Июн    

Copyright © 2025 likeauto.ru.

Powered by PressBook Media WordPress theme